
•1

CPE/EE 422/522
Advanced Logic Design

L05
Electrical and Computer Engineering
University of Alabama in Huntsville

11/06/2003 UAH-CPE/EE 422/522 AM 2

Outline

• What we know
– Combinational Networks
– Sequential Networks:

• Basic Building Blocks, Mealy & Moore Machines,
Max Frequency, Setup & Hold Times, Synchronous Design

• What we do not know
– Equivalent states and reduction of state tables

– Hardware Description Languages

11/06/2003 UAH-CPE/EE 422/522 AM 3

Review: Mealy Sequential Networks

General model of Mealy Sequential Network

(1) X inputs are changed to a new value
(2) After a delay, the Z outputs and next state appear at the output of CM
(3) The next state is clocked into the state register and the state changes

11/06/2003 UAH-CPE/EE 422/522 AM 4

Review: General Model of
Moore Sequential Machine

))t(Q(F)t(Z =

Inputs(X)

Clock

Z = z1 z2 ... zm

X = x1 x2... xn
Q = Q 1 Q2... Q k

))t(Q),t(X(G)t(Q =+

Combinational
Network

State
Register

Next
State

Outputs depend only on present state!

Outputs(Z)

State(Q)

Combinational
Network

11/06/2003 UAH-CPE/EE 422/522 AM 5

Intro to VHDL

• Technology trends
– 1 billion transistor chip running at 20 GHz in 2007

• Need for Hardware Description Languages
– Systems become more complex
– Design at the gate and flip-flop level becomes

very tedious and time consuming

• HDLs allow
– Design and debugging at a higher level before

conversion to the gate and flip-flop level
– Tools for synthesis do the conversion

• VHDL, Verilog
• VHDL – VHSIC Hardware Description Language

11/06/2003 UAH-CPE/EE 422/522 AM 6

Intro to VHDL

• Developed originally by DARPA
– for specifying digital systems

• International IEEE standard (IEEE 1076-1993)
• Hardware Description, Simulation, Synthesis
• Provides a mechanism for digital design and

reusable design documentation
• Support different description levels

– Structural (specifying interconnections of the gates),
– Dataflow (specifying logic equations), and

– Behavioral (specifying behavior)

• Top-down, Technology Dependent

•2

11/06/2003 UAH-CPE/EE 422/522 AM 7

VHDL Description of
Combinational Networks

11/06/2003 UAH-CPE/EE 422/522 AM 8

Entity-Architecture Pair

Full Adder Example

11/06/2003 UAH-CPE/EE 422/522 AM 9

VHDL Program Structure

11/06/2003 UAH-CPE/EE 422/522 AM 10

4-bit Adder

11/06/2003 UAH-CPE/EE 422/522 AM 11

4-bit Adder (cont’d)

11/06/2003 UAH-CPE/EE 422/522 AM 12

4-bit Adder - Simulation

•3

11/06/2003 UAH-CPE/EE 422/522 AM 13

Modeling Flip-Flops Using VHDL Processes

• Whenever one of the signals in the sensitivity list changes,
the sequential statements are executed
in sequence one time

General form of process

11/06/2003 UAH-CPE/EE 422/522 AM 14

Concurrent Statements vs. Process

Simulation Results

A, B, C, D are integers
A=1, B=2, C=3, D=0
D changes to 4 at time 10

time delta A B C D
0 +0 0 1 2 0
10 +0 1 2 3 4 (stat. 3 exe.)
10 +1 1 2 4 4 (stat. 2 exe.)
10 +2 1 4 4 4 (stat. 1 exe.)
10 +3 4 4 4 4 (no exec.)

11/06/2003 UAH-CPE/EE 422/522 AM 15

D Flip-flop Model

Bit values are enclosed
in single quotes

11/06/2003 UAH-CPE/EE 422/522 AM 16

JK Flip-Flop Model

11/06/2003 UAH-CPE/EE 422/522 AM 17

JK Flip-Flop Model

11/06/2003 UAH-CPE/EE 422/522 AM 18

Using Nested IFs and ELSEIFs

•4

11/06/2003 UAH-CPE/EE 422/522 AM 19

VHDL Models for a MUX

Sel represents the integer
equivalent of a 2-bit binary
number with bits A and B

If a MUX model is used inside a process,
the MUX can be modeled using a CASE statement
(cannot use a concurrent statement):

11/06/2003 UAH-CPE/EE 422/522 AM 20

MUX Models (1)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL1 of SELECTOR is
begin
p0 : process (A, SEL)
begin
if (SEL = "0000") then Y <= A(0);
elsif (SEL = "0001") then Y <= A(1);
elsif (SEL = "0010") then Y <= A(2);
elsif (SEL = "0011") then Y <= A(3);
elsif (SEL = "0100") then Y <= A(4);
elsif (SEL = "0101") then Y <= A(5);
elsif (SEL = "0110") then Y <= A(6);
elsif (SEL = "0111") then Y <= A(7);
elsif (SEL = "1000") then Y <= A(8);
elsif (SEL = "1001") then Y <= A(9);
elsif (SEL = "1010") then Y <= A(10);
elsif (SEL = "1011") then Y <= A(11);
elsif (SEL = "1100") then Y <= A(12);
elsif (SEL = "1101") then Y <= A(13);
elsif (SEL = "1110") then Y <= A(14);
else Y <= A(15);
end if;

end process;
end RTL1;

11/06/2003 UAH-CPE/EE 422/522 AM 21

MUX Models (2)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL3 of SELECTOR is

begin

with SEL select
Y <= A(0) when "0000",

A(1) when "0001",

A(2) when "0010",

A(3) when "0011",

A(4) when "0100",

A(5) when "0101",

A(6) when "0110",

A(7) when "0111",
A(8) when "1000",

A(9) when "1001",

A(10) when "1010",

A(11) when "1011",

A(12) when "1100",

A(13) when "1101",

A(14) when "1110",

A(15) when others;
end RTL3;

11/06/2003 UAH-CPE/EE 422/522 AM 22

MUX Models (3)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL2 of SELECTOR is
begin
p1 : process (A, SEL)
begin
case SEL is

when "0000" => Y <= A(0);
when "0001" => Y <= A(1);
when "0010" => Y <= A(2);
when "0011" => Y <= A(3);
when "0100" => Y <= A(4);
when "0101" => Y <= A(5);
when "0110" => Y <= A(6);
when "0111" => Y <= A(7);
when "1000" => Y <= A(8);
when "1001" => Y <= A(9);
when "1010" => Y <= A(10);
when "1011" => Y <= A(11);
when "1100" => Y <= A(12);
when "1101" => Y <= A(13);
when "1110" => Y <= A(14);
when others => Y <= A(15);

end case;
end process;

end RTL2;

11/06/2003 UAH-CPE/EE 422/522 AM 23

MUX Models (4)
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;
entity SELECTOR is

port (

A : in std_logic_vector(15 downto 0);

SEL : in std_logic_vector(3 downto 0);

Y : out std_logic);

end SELECTOR;

architecture RTL4 of SELECTOR is

begin

Y <= A(conv_integer(SEL));
end RTL4;

11/06/2003 UAH-CPE/EE 422/522 AM 24

Compilation and Simulation of VHDL Code

• Compiler (Analyzer) – checks the VHDL source code
– does it conforms with VHDL syntax and semantic rules
– are references to libraries correct

• Intermediate form used by a simulator or by a synthesizer
• Elaboration

– create ports, allocate memory storage, create interconnections, ...
– establish mechanism for executing of VHDL processes

•5

11/06/2003 UAH-CPE/EE 422/522 AM 25

Timing Model

• VHDL uses the following simulation cycle to model
the stimulus and response nature of digital
hardware

Delay
Start Simulation

Update Signals Execute Processes

End Simulation

11/06/2003 UAH-CPE/EE 422/522 AM 26

Delay Types

• All VHDL signal assignment statements prescribe
an amount of time that must transpire before the
signal assumes its new value

• This prescribed delay can be in one of three forms:
– Transport -- prescribes propagation delay only
– Inertial -- prescribes propagation delay and minimum input pulse width
– Delta -- the default if no delay time is explicitly specified

Input
delay

Output

11/06/2003 UAH-CPE/EE 422/522 AM 27

Transport Delay

• Transport delay must be explicitly specified
– I.e. keyword “TRANSPORT” must be used

• Signal will assume its new value
after specified delay

Input Output

0 5 10 15 20 25 30 35

Input

Output

-- TRANSPORT delay example
Output <= TRANSPORT NOT Input AFTER 10 ns;

11/06/2003 UAH-CPE/EE 422/522 AM 28

Inertial Delay

• Provides for specification propagation delay and
input pulse width, i.e. ‘inertia’ of output:

• Inertial delay is default and REJECT is optional:

Input

Output

0 5 10 15 20 25 30 35

Input Output

target <= [REJECT time_expression] INERTIAL waveform;

Output <= NOT Input AFTER 10 ns;
-- Propagation delay and minimum pulse width are 10ns

11/06/2003 UAH-CPE/EE 422/522 AM 29

Inertial Delay (cont.)

• Example of gate with ‘inertia’ smaller than
propagation delay
– e.g. Inverter with propagation delay of 10ns which

suppresses pulses shorter than 5ns

• Note: the REJECT feature is new
to VHDL 1076-1993

Input

Output

0 5 10 15 20 25 30 35

Output <= REJECT 5ns INERTIAL NOT Input AFTER 10ns;

11/06/2003 UAH-CPE/EE 422/522 AM 30

Delta Delay

• Default signal assignment propagation delay if no
delay is explicitly prescribed
– VHDL signal assignments do not take place immediately

– Delta is an infinitesimal VHDL time unit so that all signal
assignments can result in signals assuming their values
at a future time

– E.g.

• Supports a model of concurrent VHDL process
execution
– Order in which processes are executed by simulator

does not affect simulation output

Output <= NOT Input;
-- Output assumes new value in one delta cycle

•6

11/06/2003 UAH-CPE/EE 422/522 AM 31

Simulation Example

11/06/2003 UAH-CPE/EE 422/522 AM 32

Problem #1

• Using the labels,
list the order in
which the following
signal assignments
are evaluated if in2
changes from a '0'
to a '1'. Assume
in1 has been a '1'
and in2 has been a
'0' for a long time,
and then at time t
in2 changes from a
'0' to a '1'.

entity not_another_prob is

port (in1, in2: in bit;

a: out bit);

end not_another_prob;

architecture oh_behave of not_another_prob is

signal b, c, d, e, f: bit;

begin

L1: d <= not(in1);

L2: c<= not(in2);

L3: f <= (d and in2) ;

L4: e <= (c and in1) ;

L5: a <= not b;

L6: b <= e or f;

end oh_behave;

11/06/2003 UAH-CPE/EE 422/522 AM 33

Problem #2

• Under what conditions do the two assignments below
result in the same behavior? Different behavior? Draw
waveforms to support your answers.

out <= reject 5 ns inertial (not a) after 20 ns;

out <= transport (not a) after 20 ns;

11/06/2003 UAH-CPE/EE 422/522 AM 34

Modeling a Sequential Machine

Mealy Machine for
8421 BCD to 8421 BCD + 3 bit serial converter

How to model this in VHDL?

11/06/2003 UAH-CPE/EE 422/522 AM 35

Behavioral VHDL Model

Two processes:
• the first represents the

combinational network;
• the second represents

the state register

11/06/2003 UAH-CPE/EE 422/522 AM 36

Simulation of the VHDL Model

Simulation command file:

Waveforms:

•7

11/06/2003 UAH-CPE/EE 422/522 AM 37

Dataflow VHDL Model

33

21313213

12

21

''
''''')(

)(

)(

XQQXZ
QQXQQXQQQtQ

QtQ

QtQ

+=
++=

=

=

+

+

+

11/06/2003 UAH-CPE/EE 422/522 AM 38

Structural Model

Package bit_pack is a part of library BITLIB –
includes gates, flip-flops, counters
(See Appendix B for details)

11/06/2003 UAH-CPE/EE 422/522 AM 39

Simulation of the Structural Model

Simulation command file:

Waveforms:

11/06/2003 UAH-CPE/EE 422/522 AM 40

Wait Statements

• ... an alternative to a sensitivity list
– Note: a process cannot have both wait statement(s)

and a sensitivity list

• Generic form of a process with wait statement(s)
process
begin

sequential -statements
wait statement
sequential -statements

wait-statement
...

end process;

How wait statements work?
• Execute seq. statement until

a wait statement is encountered.
• Wait until the specified condition is satisfied.
• Then execute the next

set of sequential statements until
the next wait statement is encountered.

• ...
• When the end of the process is reached

start over again at the beginning.

11/06/2003 UAH-CPE/EE 422/522 AM 41

Forms of Wait Statements

• Wait on
– until one of the signals in the

sensitivity list changes

• Wait for
– waits until the time specified

by the time expression has
elapsed

– What is this:
wait for 0 ns;

• Wait until
– the booleanexpression is

evaluated whenever one of
the signals in the expression
changes, and the process
continues execution when
the expression evaluates to
TRUE

wait on sensitivity-list;
wait for time-expression;
wait until boolean-expression;

11/06/2003 UAH-CPE/EE 422/522 AM 42

Using Wait Statements (1)

•8

11/06/2003 UAH-CPE/EE 422/522 AM 43

Using Wait Statements (2)

11/06/2003 UAH-CPE/EE 422/522 AM 44

To Do

• Read
– Textbook chapters 2.1, 2.2

